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Chapter 8

Quality Control of RNA-Seq Experiments

Xing Li, Asha Nair, Shengqin Wang, and Liguo Wang

Abstract

Direct sequencing of the complementary DNA (cDNA) using high-throughput sequencing technologies 
(RNA-seq) is widely used and allows for more comprehensive understanding of the transcriptome than 
microarray. In theory, RNA-seq should be able to precisely identify and quantify all RNA species, small or 
large, at low or high abundance. However, RNA-seq is a complicated, multistep process involving reverse 
transcription, amplification, fragmentation, purification, adaptor ligation, and sequencing. Improper opera-
tions at any of these steps could make biased or even unusable data. Additionally, RNA-seq intrinsic biases 
(such as GC bias and nucleotide composition bias) and transcriptome complexity can also make data imper-
fect. Therefore, comprehensive quality assessment is the first and most critical step for all downstream analy-
ses and results interpretation. This chapter discusses the most widely used quality control metrics including 
sequence quality, sequencing depth, reads duplication rates (clonal reads), alignment quality, nucleotide 
composition bias, PCR bias, GC bias, rRNA and mitochondria contamination, coverage uniformity, etc.
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1  Introduction

RNA-seq has led to a better understanding of the RNA universe by 
providing unprecedented opportunities to interrogate the tran-
scriptome from different perspectives. These include gene expres-
sion profiling [1–4], new isoforms or alternative splicing 
identification and quantification [5–7], novel transcripts such as 
lincRNAs discovery [8–10], aberrant transcripts such as gene 
fusion identification [11–13], and variant calling [14–17]. 
However, current library preparation protocols of RNA-seq are 
still developing and possess several intrinsic biases and limitations, 
such as nucleotide composition bias, GC bias, and PCR bias, which 
could directly detriment many RNA-seq applications [18, 19].

In general, quality of RNA-seq experiments can be assessed at 
two different levels. Raw sequence based metrics, which check 
RNA-seq experiments at a “low level” because they do not require 
sequence alignments. These assessments include read (i.e., a con-
secutive sequence of nucleotides) quality, read duplication rate 
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(clonal reads), GC content, nucleotide composition bias, etc. 
However, raw sequence-based metrics largely focuses on evaluat-
ing the success of sequencing technologies and themselves alone 
cannot ensure the usability (biologic accuracy) of RNA-seq data. 
Therefore, checking RNA-seq data at a “higher level” is also 
imperative. These metrics include mapping statistics, coverage uni-
formity, saturation of sequencing depth, reads distribution over 
gene structure, ribosomal RNA contamination, reproducibility 
between biological replicates, etc.

Phred quality score (Q) was originally developed by the program 
Phred to measure base-calling reliability from Sanger sequencing 
chromatograms [20, 21]. It is defined as Q = −10 × log10(P) where 
P is the probability of erroneous base calling. For example, a Phred 
quality score of 30 means the chance that this base is called incor-
rectly is 1 in 1,000. Although the Phred program is rarely used in 
next-generation sequencing field, Phred or Phred-like quality score 
has become widely accepted to characterize the quality of DNA 
sequences (see Note 1). Most often, Phred scores are reported as 
their corresponding ASCII characters (33–126 or “!” to “V”) (see 
Note 2 for FASTQ format), but SOLiD still uses numbers to rep-
resent quality scores.

There is no gold standard to tell if the quality of a particular 
sequence is good or bad, as this is really depending on the purpose 
of the study. For example, compared to expression profiling, vari-
ants calling tasks require much higher sequence quality. In general, 
scores over 30 indicate very good quality, 20–30 indicate reason-
able good and <20 indicate poor quality. Parallel boxplots visualize 
“per nucleotide quality score” by summarizing Phred qualities for 
all reads at each position (Fig. 1a) [22, 23]. In addition, one can 
also calculate the average quality score per read (“per sequence 
quality score”) and check the quality score distribution of all 
sequences (Fig. 1b).

GC content (or guanine-cytosine content) is the percentage of 
bases in a DNA sequence that are either guanine or cytosine. It is 
a simple way to measure nucleotide composition of DNA. The rea-
son to use GC rather than AT (or AU in RNA) is that GC content 
carries more direct biologic meaning. GC pairs are more stable 
than AT (3 vs. 2 hydrogen bonds) which has implications in PCR 
experiments where the GC content of primers predicts their anneal-
ing temperature. Further, exons have much higher GC content 
than introns and intergenic regions and cytosine is the target of 
DNA methylation. People have found the dependence between 
read coverage and the GC content of reference genome in high-
throughput sequence data. Therefore, evaluating GC content bias 
in RNA-seq data is of great importance to both transcript detec-
tion and abundance quantification [18].

1.1  Raw Sequence 
Quality

1.2  Nucleotide 
Composition and GC 
Content

Xing Li et al.



139

Assume RNA-seq reads were randomly sampled from expressed 
transcripts, when we pileup reads together and calculate the nucle-
otide composition (percentage of A, C, G, and T) at each positions 
or column, we expect little differences between columns. Random 
fluctuations will be cancelled out because the large sample size 
(i.e., hundreds of millions of reads). If we visualize nucleotide 
composition versus nucleotide positions in a diagram [22] the lines 
should be roughly flat at a value of 0.25 (Fig. 2a). In practical, the 
first 12 bases starting from 5′ end of reads exhibit large deviation 
from 0.25, this is due to the random hexamer priming during PCR 
amplification [19]. A serious bias indicates the existence of over-
represented sequences, and such bias will influence coverage uni-
formity as well as transcripts abundance estimation. Per sequence 
GC content can be roughly used to measure the randomness of 
sequencing library as GC content of reads from random sequence 
library follows normal distribution with the mean equals to the 
overall GC content of the transcriptome (Fig. 2b). A poorly pre-
pared or contaminated library will exhibit a skewed distribution.

Read duplication rate is affected by read length, sequencing depth, 
transcript abundance and PCR amplification. Supposing the sequenc-
ing library is purely random and read length is 36 bp, the chance 
to get a duplicated read is 1/472 (or 4.5 × 10−44), this chance is still 
slim even if the sequencing depth reaches hundreds of millions. 

1.3  Duplicate 
Sequences (PCR 
Duplication)
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Fig. 1 (a) Parallel boxplot showing “per nucleotide quality score.” All reads are overlaid together, and then 
summarize Phred quality score (Y-axis) for each position of read from 5′ to 3′ end (X-axis). (b) “per sequence 
quality score” distribution. For each read, “per sequence quality score” is calculated as the average Phred 
quality score (X-axis) across all nucleotides
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Therefore, the majority of duplicated reads were artificially gener-
ated from PCR amplification [22]. And because of this, duplication 
rate is one way to check PCR amplification bias. To circumvent the 
huge memory requirement, tools such as FastQC will only track the 
first 200,000 short reads in each file for duplication level and creates 
a graph plotting the count of sequences with different degrees of 
duplication. By default, FastQC will raise a warning if there are more 
than 20 % of duplicated sequences in total and a failure if this num-
ber reaches over 50 % as the sequencing library is seriously biased 
and may not randomly sampling the target sequence.

Mapping statistics are the simplest and most intuitive way to assess 
if RNA sequencing was successful. These include mappability 
(number of reads aligned to reference genome), number of reads 
aligned to unique locations in the genome, and the number of 
splice mapped reads and number of reads mapped to mitochon-
dria. It is difficult to derive reasonable or even empirical thresholds 
to determine if a particular RNA sequencing was successful or not, 
because these metrics really depend on read length, sequencing 
depth, bioinformatic analysis parameters, sample preparation pro-
tocol, and tissue type. For example, compared with shorter reads, 
longer reads will have better mappability, lower duplication rate, 
higher proportion that aligned to unique genome location, more 
spliced reads given the same sequencing depth. For the same 
sequencing depth and same read length, number of splice reads 

1.4  Descriptive 
Statistics
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Fig. 2 (a) Diagram showing nucleotide composition bias at the beginning of reads. All reads are overlaid 
together, and then calculate nucleotide frequency (Y-axis) for each position of read (X-axis). Four nucleotides 
were indicated using different colors. (b) “per sequence GC content” distribution
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may be dramatically different between two RNA-seq datasets simply 
because tissue origins are different. Muscle and heart tissues usu-
ally have much more mitochondria than other tissue types, and 
therefore mitochondria reads could be a problem if they account 
for a large proportion (i.e., >30 %), as this makes actual sequencing 
depth much lower than expected.

The goal of most RNA-seq studies is to interrogate functional mes-
sage RNA (mRNA). However, structure RNAs such as Ribosomal 
RNA (rRNA) and transfer RNA (tRNA) are the most abundant 
RNA species and constitute 60–90 % of total RNA in a cell. To 
avoid having these RNAs dominate the sequencing data, it is nec-
essary to remove these RNA species before preparing libraries for 
deep sequencing. Two approaches have been used to enrich 
mRNA.  The first approach starts with total RNA that has been 
depleted of rRNA by using a set of oligos that binds to rRNA (such 
as RiboMinus™), and the second method selects for transcripts by 
isolating poly-A RNA as the staring materials for the construction 
of sequencing libraries.

Even with ribosome depletion, a fair amount of ribosomal 
sequences may still remain in the raw data. Small amounts of rRNA 
contamination will not be a detriment to downstream analyses. 
However, a larger amount of ribosomal reads usually suggests 
rRNA depletion was inefficient or failed and additional sequencing 
may be necessary. Assessing rRNA contamination is straightfor-
ward; aligning reads to reference genome and then counts how 
many reads mapped to ribosome genes, or aligning reads directly 
to ribosomal RNA sequences.

RNA-seq experiments are diverse in their aims and design goals. 
The amount of sequencing needed for a given sample is determined 
by the goals of the experiment. For gene expression profiling, 
where we are interested to find quantitative differences of known 
genes between groups, modest sequencing depth is good enough 
(e.g., 30 million pair-end reads with length >30 bp for mammalian 
genomes). But for studies that involve investigation of alternative 
splicing, gene fusion detection and novel transcript identification, 
deeper read depths is required to be able to adequately cover not 
just the exons but also exon–exon junctions. It is recommended by 
ENCODE consortium that a minimum of 100–200 million 
2 × 76 bp or longer reads is needed for mammalian genomes.

The saturation test is an approach to determine if current 
sequencing depth is deep enough to satisfy a particular purpose. 
It  is fundamentally important because if sequencing was unsatu-
rated, estimated gene expression metrics such as RPKM (Reads Per 
Kilobase exon per Million mapped reads) will be unstable and low 
abundant isoforms will be undiscovered. In practical, we resample 
5, 10, …, 100  % of the total mapped reads and RPKMs are 

1.5  rRNA/tRNA 
Contamination

1.6  Saturation Test 
of Sequencing Depth
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subsequently recalculated using each subset. For a particular tran-
script, RPKM values may vary at the beginning with very small 
sample sizes, but finally could reach a plateau. The stable RPKM 
values indicate a saturated sequencing depth; otherwise, sequenc-
ing depth should be increased until RPKM values enter a station-
ary stage (Fig.  3a). Saturation test for splice junction is similar; 
splice junctions are detected for each resampled subset, and num-
ber of detected splice junctions will increase as the resample per-
centage increases, but finally will reach a fixed value. The junction 
saturation test is very important for alternative splicing analysis, as 
unsaturated sequencing depth would miss many low-abundance 
yet bona fide splicing junctions. Due to the sensitivity of RNA-seq, 
the number of identified novel splice junctions will increase as 
sequencing depth goes deeper, and therefore saturation rarely 
occurs for novel splice junctions even with billons of reads in mam-
malian genome (Fig. 3b).

For RNA sequencing technology, depending on the goal of 
the  experiment, replicates can be of two kinds, technical and 
biological. Technical replicates are replicates obtained from the 
same sample for purposes of studying batch effects and evaluating 
the technology, including background noise, differences in 
sequencing chemistry, instrument-to-instrument differences, etc. 
Biological replicates are the most desired form of replicates, as 
these provide us with the true variation among biological samples. 

1.7  Reproducibility 
Between Replicates
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Fig. 3 Saturation test of sequencing depth. (a) Saturation test using RPKM (gene expression measurement). 
RPKMs were recalculated for each resampled subset (blue dots) to test if RPKM values enter a steady state 
(or saturated). (b) Saturation test using detected splice junctions (blue: annotated junction, red: novel junction). 
Horizontal dashed line indicates all annotated junctions encoded in reference gene models
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The use of such replicates comes into play for experiments that 
involve comparison of two or more groups for differential expres-
sion analysis. It is recommended to have at least two biological 
replicates per group in order to statistically determine the signifi-
cantly differentially expressed genes.

Evaluating the reproducibility between replicates is straight-
forward. Most often scatter plots are used to visualize the repro-
ducibility between expression measurements such as RPKM or 
FPKM (Fragment Per Kilobase exon per Million reads). Logarithm 
transformation of RPKM is necessary because of the large dynamic 
range of RPKM values. After logarithm transformation, expression 
values roughly follow a normal distribution and have a high 
Pearson’s correlation coefficient (Fig. 4).

Gene body coverage describes the overall reads density over the 
mRNA regions (both UTR exon and CDS exon). Ideally, each 
base has the same chance to be sequenced, and each site within 
gene body has similar coverage. However, read density profiles can 
be affected by library preparation protocol, PCR amplification, 
RNA degradation, genome complexity and the underlying gene 

1.8  Coverage 
Uniformity
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Fig. 4 Scatter plot showing reproducibility between two RNA-seq datasets (technical replicates). Each blue dot 
represents a gene, and the red dashed line is linear regression line
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model used. For example, RNA-seq data using poly-A selection 
usually have higher coverage at 3′ end. PCR amplification effi-
ciency could be different for different DNA fragments site, this 
also introduce uneven coverage. Low DNA complexity (or repeti-
tive) regions usually have higher coverage but this will depend on 
how multi-hit reads were processed. For RNA-seq data that are 
not strand specific, coverage profile is also affected by underlying 
reference gene model; for example, an uneven coverage occurs 
when two genes are overlapped in the genome and express differ-
ently. Coverage profile is the most intuitive way to check unifor-
mity, by normalizing all annotated genes into the same scale, and 
then calculating coverage for each position (Fig. 5).

After mapping reads to a reference genome, we can calculate the 
fraction of reads assigned to exons (including both UTR and CDS 
exons), introns and intergenic regions based on the provided gene 
model. In ideal conditions and for well-annotated organisms, most 
of reads in RNA-seq data should be mapped to exonic regions. 
However, in practice, a considerable amount of reads are mapped 
to intron or intergenic regions. Except for mapping artifacts, inter-
genic/intronic reads are mainly from DNA contamination, pre-
mRNAs, new isoforms, or novel transcripts. Some UTR regions 
are overrepresented (i.e., higher reads density) because of DNA 

1.9  Reads 
Distribution (Intron, 
Exon, UTR, etc.)
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Fig. 5 Coverage uniformity over gene body. All transcripts were scaled into the 
same length (100 nucleotides) and then reads coverage (Y-axis) was calculated 
for each position (X-axis) from 5′ to 3′ end
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repeats or PCR bias, but most often they have lower reads density 
due to RNA degradation. Specially, when poly-A RNA-seq proto-
col was used, reads are biased (i.e., overrepresented) in 3′UTR.

In mammalian genomes, many genes encoded on different strands 
are partially or completely overlapped. Therefore, conventional 
RNA-seq cannot decode the complex transcriptome due the lack 
of RNA polarity information. Strand specific RNA-seq experiments 
can overcome these limitations and is better suited for genome 
annotation (such as identify anti-sense noncoding RNA, demar-
cate the exact boundaries of adjacent genes transcribed on differ-
ent strand), de novo transcriptome assembly, accurate digital gene 
expression and variant calling. Strandness is achieved by degrade 
one cDNA strand or by ligating distinct RNA adapters to the 5′ 
and 3′ ends of each RNA molecule prior to cDNA synthesis [24]. 
The specificity of a strand-specific protocol can be calculated by 
comparing the strand of reads to the strand of a reference gene. 
For example, if there is only one gene located in the forward strand 
in a particular region, one would expect the majority (>90 %) of 
reads mapped to this region will be forward reads (determined 
from protocol). Further, one can use spliced reads to measure 
strand specificity, because the strandness of spliced reads can be 
easily inferred from splicing motif (such as GT/AG).

2  Notes

	1.	 Two different equations, standard Sanger format and Solexa/
Illumina format (prior to v1.3) have been used to calculate Q 
[25]. After Illumina Pipeline v1.4, the quality scheme has been 
changed into standard Sanger scale.

	
Q P Q

P

PSanger Solexa prior to v= - ´ = - ´
-( )10 10

110 1 3 10log ; log_ _ .
	

 2.	 FASTQ file stores nucleotide sequences and Phred qualities in 
the same file. For example:

@read_1 ← (read identifier)
CCGGCCCCAGGCTCCTGTCTCCCCCCAGGTGTGTGGTGATGCCAGGCATG←sequence

+read_1 ← (read identifier, can be omitted)
@@;D?DADF=FHFBEBH+A2ADFGFH:;09?*/?BB=F)==FH3=@CH@?← quality

@read_2 ← (another read identifier)
CTGCTCTCTCTTGCTGATGGACAAGGGGGCATCAAACAGCTTCTCCTCTG

+read_2 ← (another read identifier, can be omitted)
CCCFFFFFHHHGHJJIJJJJJJJIJJJJJJIIJIJJFGIIIJJIIIIIGJ

1.10  Strand 
Specificity
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